
Talks:
Jan 20 @ Infosys Bangalore,
Jan 29 @ IITK

M
a

ss
a

ch
u

se
tt

s
In

st
itu

te
 o

f
Te

ch
n

o
lo

g
y

Professor Barbara Liskov is the Ford Professor of Engineering in the MIT
School of Engineering's Electrical Engineering and Computer Science
department and an Institute Professor at the Massachusetts Institute of
Technology. She leads the Programming Methodology Group at MIT, with a
current research focus in Byzantine fault tolerance and distributed
computing.

The contributions of Professor Liskov include the design and
implementation of CLU, a programming language that significantly
influenced the development of object-oriented programming; Argus, the
first high-level language to support implementation of distributed programs;
and Thor, an object-oriented database system. With Jeannette Wing, she
developed a particular definition of subtyping, commonly known as the
Liskov substitution principle.

Department of Computer Science & Engineering

Hari Sahasrabuddhe Lecture Series

Inflections in Computing
on

Title: The Power of Abstraction
Abstract:

Science. It encompasses finding the right interface for a system
as well as finding an effective design for a system

implementation. Furthermore, abstraction is the basis for
program construction, allowing programs to be built in a

modular fashion. This talk will discuss how the abstraction
mechanisms we use today came to be, how they are

supported in programming languages, and some
possible areas for future research.

Abstraction is at the center of much work in Computer

BARBARA LISKOV

IIT Kanpur

//package
Crypto;

import
java.io.*;

public class
GF256
{
public static
final int
FieldSize = 256;
// size of the
field GF[256]
public static
final int
mulGroupSize =
255; // size of
multiplicative
group GF^*[256]
public static
final int
noPrimePowers =
128; // size of
multiplicative
group Z^*_{255}
public static
final byte ZERO
= 0; // element
0
public static
final byte ONE =
1; // element 1
public static
final byte
GENERATOR = 3;
// generator of
the
multiplicative
group

/*
Multiplication
and
exponentiation
in the field is
done by a table
lookup.
 * The two
tables are
present in a
file, and need
to be stored in
the class.
 * The following
two arrays are
used for this
purpose.
 */
private static
byte[][]
multTable = new
byte[FieldSize][
FieldSize];
private static
byte[][]
expTable = new
byte[FieldSize][
FieldSize];

/* Sometimes it
is required to
move from the
normal
representation
of an element
 * of GF^*[256]
to generator
power
representation.
The following
two arrays
 * allow
conversion in
both directions.
 */
private static
byte[]
powerToNormal =
new
byte[FieldSize];
private static
byte[]
normalToPower =
new
byte[FieldSize];
private static
byte[]
primePowers =
new
byte[noPrimePowe
rs];
private static
byte[]
invPrimePowers =
new
byte[noPrimePowe
rs];
else { // large
N
for (i = 0; i <
N; I++)
for (j = 0; j <
N; j++)
M[i][j] = (i ==
j ? ONE : ZERO);
} // end of
class definition

	Page 1

